ON CENTRAL AUTOMORPHISMS OF FREE METABELIAN LIE ALGEBRAS

نویسندگان

چکیده

Let $F_m$ be the free metabelian Lie algebra of rank $m$ over a field $K$ characteristic 0. An automorphism $\varphi$ is called central if commutes with every inner $F_m$. Such automorphisms form centralizer $\text{\rm C}(\text{\rm Inn}(F_m))$ group Inn}(F_m)$ in Aut}(F_m)$. We provide an elementary proof to show that Inn}(F_m))=\text{\rm Inn}(F_m)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of Metabelian Lie Algebras(')

The classification of 2-step nilpotent Lie algebras is attacked by a generator-relation method. The main results are in low dimensions or a small number of relations. Introduction. According to a theorem of Levi, in characteristic zero a finitedimensional Lie algebra can be written as the direct sum of a semisimple subalgebra and its unique maximal solvable ideal. If the field is algebraically ...

متن کامل

Free centre - by - metabelian Lie algebras in characteristic 2

We study free centre-by-metabelian Lie algebras over a field of characteristic 2. By using homological methods, we determine the dimensions of the fine homogeneous components of the second-derived algebra. In conjunction with earlier results by Mansuroǧlu and the second author, this leads to a complete description of the additive structure of the second-derived ideal in the free centre-by-metab...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Automorphisms of the category of free Lie algebras

We prove that every automorphism of the category of free Lie algebras is a semi-inner automorphism. This solves the problem 3.9 from [19] for Lie algebras.

متن کامل

Anosov Automorphisms of Nilpotent Lie Algebras

Each matrix A in GLn(Z) naturally defines an automorphism f of the free r-step nilpotent Lie algebra fn,r. We study the relationship between the matrix A and the eigenvalues and rational invariant subspaces for f. We give applications to the study of Anosov automorphisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of universal mathematics

سال: 2022

ISSN: ['2618-5660']

DOI: https://doi.org/10.33773/jum.1141787